Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation
نویسندگان
چکیده
The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethyldecane, 3,3 dimethyl heptane, and 2,2,3,3-teramethyl pentane were detected as thermal and oxidative contaminants that adversely affect the quality of cooking oil. Fundamentally, waste cooking oil comprises ester bonds of long chain fatty acids. The extracellular lipase produced from P. chrysogenum was explored for the hydrolysis of waste cooking oil. The incorporation of lipase to waste cooking oil in 1:1 proportion released 17 % oleic acid and 5 % stearic acid.
منابع مشابه
Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease.
The aim of present work was to bioremediate the waste cooking oil using a novel lipase produced in solid medium containing waste grease and wheat bran by Penicillium chrysogenum. Enzyme extracted with phosphate buffer was purified 10.6 and 26.28-fold after 90% ammonium sulfate precipitation and ion-exchange chromatography, respectively. The partial characterization of enzyme revealed its K(m) a...
متن کاملLipase Production in Solid State Fermentation Using Aspergillus niger: Response Surface Methodology
Among enzymes, lipases have been widely investigated because of the numerous industrial applications. In this study, optimization of lipase production by Aspergillus niger in solid state fermentation from rice bran as solid substrate was investigated. The optimal conditions with the aid of central composite design (CCD) under response surface methodology (RSM) were obtained. In the analysis of...
متن کاملLipase applications in food industry
Lipases are the most pliable biocatalyst and bring about a wide range of bioconversion reactions, such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. Lipases can act on a variety of substrates including natural oils, synthetic triglycerides and esters of fatty acids. They are resistant to solvents and are exploited in a broad spectrum of biotechnolog...
متن کاملLipase Catalyzed Incorporation of Conjugated Linoleic Acid by Transesterification into Sunflower Oil Applying Immobilized Lipase (Lipozyme Thermomyces lanuginosus and Rhizomucor mehei)
Conjugated Linoleic Acid (CLA), Glycerol (G) and sunflower oil blends with varying concentration were subjected to enzymatic esterification using a 1, 3- specific immobilized lipase. CLA was used as acyl due to its purported health benefits. The transesterified lipids were evaluated for free fatty acids (FFA) and composition of fatty acids by gas chromatography. Lipozyme RM IM is preferred for ...
متن کاملBioremediation of cooking oil waste using lipases from wastes
Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do...
متن کامل